638 research outputs found

    i2MapReduce: Incremental MapReduce for Mining Evolving Big Data

    Full text link
    As new data and updates are constantly arriving, the results of data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. In this paper, we propose i2MapReduce, a novel incremental processing extension to MapReduce, the most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs key-value pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and (iii) incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics. Experimental results on Amazon EC2 show significant performance improvements of i2MapReduce compared to both plain and iterative MapReduce performing re-computation

    Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    Get PDF
    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region

    Reconstruction of flame temperature field with optical sectioning method

    Get PDF

    Moments of Matrix Variate Skew Elliptically Contoured Distributions

    Get PDF
    Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss the first two moments of the matrix variate skew elliptically contoured distributions

    Stochastic Representations of the Matrix Variate Skew Elliptically Contoured Distributions

    Get PDF
    Matrix variate skew elliptically contoured distributions generalize several classes of important distributions. This paper defines and explores matrix variate skew elliptically contoured distributions. In particular, we discuss two stochastic representations of the matrix variate skew elliptically contoured distributions

    Effects of fatigue on biomechanics of forehand smash in badminton

    Get PDF
    Sports fatigue will cause deformation of actions. In this study, badminton was analyzed, and the influence which was brought by fatigue was studied from the perspective of biomechanics. The forehand smash of professional badminton athletes under normal and fatigue states was tested. The biomechanical indexes of athletes were obtained by infrared remote shooting test system and plantar pressure test system for comparison. The results showed that the forehand smash effect of athletes was significantly worse under fatigue state, the maximum gravity center height decreased to 1.22 ± 0.14 m, and the maximum gravity center speed decreased to 2.33 ± 0.12 m/s, which showed significant decreases compared to the normal state (P< 0.05). Moreover the maximum velocity of the right upper arm, right forearm, elbow joint, wrist joint and knee joint decreased significantly (P< 0.5), the maximum angle of the right hip joint, knee joint and left ankle joint also decreased significantly. The pressure of the inner side of the forefoot and the pressure in the middle of the forefoot increased (P< 0.05). The biomechanical analysis of forehand smash under fatigue condition reveals the relationship between fatigue and movement, which provides some scientific bases for the reasonable control of sports load

    Pattern evolution and modal decomposition of Faraday waves in a brimful cylinder

    Get PDF
    This paper investigates the steady-state pattern evolution of symmetric Faraday waves excited in a brimful cylindrical container when driving parameters much exceed critical thresholds. In such liquid systems, parametric surface responses are typically considered as the resonant superposition of unstable standing waves. A modified free-surface synthetic Schlieren method is employed to obtain full three-dimensional spatial reconstructions of instantaneous surface patterns. Multi-azimuth structures and localized travelling waves during the small-elevation phases of the oscillation cycle give rise to modal decomposition in the form of -basis modes. Two-step surface-fitting results provide insight into the spatiotemporal characteristics of dominant wave components and corresponding harmonics in the experimental observations. Arithmetic combination of modal indices and uniform frequency distributions reveal the nonlinear mechanisms behind pattern formation and the primary pathways of energy transfer. Taking the hypothetical surface manifestation of multiple azimuths as the modal solutions, a linear stability analysis of the inviscid system is utilised to calculate fundamental resonance tongues (FRTs) with non-overlapping bottoms, which correspond to subharmonic or harmonic -basis modes induced by surface instability at the air-liquid interface. Close relationships between experimental observations and corresponding FRTs provide qualitative verification of dominant modes identified using surface-fitting results. This supports the validity and rationality of the applied -basis modes.</p
    • …
    corecore